1,918 research outputs found

    Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron

    Full text link
    We address known discrepancies between the heavy flavor properties of jets produced at the Tevatron collider and the prediction of conventional-QCD simulations. In this study, we entertain the possibility that these effects are real and due to new physics. We show that all anomalies can be simultaneously fitted by postulating the additional pair production of light bottom squarks with a 100% semileptonic branching fraction.Comment: 30 pages, 13 figures, 3 tables. Submitted to Phys. Rev.

    Search for narrow resonances below the Upsilon mesons

    Full text link
    We have investigated the invariant mass spectrum of dimuons collected by the CDF experiment during the 1992-1995 run of the Fermilab Tevatron collider to improve the limit on the existence of narrow resonances set by the experiments at the SPEAR e+e- collider. In the mass range 6.3-9.0 GeV/c^2, we derive 90% upper credible limits to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the Y(1S) meson. In this mass range, the average limit varies from 1.7 to 0.5%. This limit is much worse at the mass of 7.2 GeV/c^2 due to an excess of 250+-61 events with a width consistent with the detector resolution.Comment: 20 pages, 9 figures. This version has some typos fixed in the text and bibliography. A reference was added in bibliography. Submitted to Phys. Rev. D With this last submission we provide the version accepted for publication in Phys.Rev.

    Properties of ρ\rho and ω\omega Mesons at Finite Temperature and Density as Inferred from Experiment

    Full text link
    The mass shift, width broadening, and spectral density for the ρ\rho and ω\omega mesons in a heat bath of nucleons and pions are calculated using a general formula which relates the self-energy to the real and imaginary parts of the forward scattering amplitude. We use experimental data to saturate the scattering amplitude at low energies with resonances and include a background Pomeron term, while at high energies a Regge parameterization is used. The real part obtained directly is compared with the result of a dispersion integral over the imaginary part. The peaks of the spectral densities are little shifted from their vacuum positions, but the widths are considerably increased due to collisional broadening. Where possible we compare with the UrQMD model and find quite good agreement. At normal nuclear matter density and a temperature of 150 MeV the spectral density of the ρ\rho meson has a width of 345 MeV, while that for the ω\omega is in the range 90--150 MeV.Comment: 21 pages revtex + 9 postscript figure

    Shadowing, Binding and Off-Shell Effects in Nuclear Deep Inelastic Scattering

    Full text link
    We present a unified description of nuclear deep inelastic scattering (DIS) over the whole region 0<x<10<x<1 of the Bjorken variable. Our approach is based on a relativistically covariant formalism which uses analytical properties of quark correlators. In the laboratory frame it naturally incorporates two mechanisms of DIS: (I) scattering from quarks and antiquarks in the target and (II) production of quark-antiquark pairs followed by interactions with the target. We first calculate structure functions of the free nucleon and develop a model for the quark spectral functions. We show that mechanism (II) is responsible for the sea quark content of the nucleon while mechanism (I) governs the valence part of the nucleon structure functions. We find that the coherent interaction of qˉq\bar qq pairs with nucleons in the nucleus leads to shadowing at small xx and discuss this effect in detail. In the large xx region DIS takes place mainly on a single nucleon. There we focus on the derivation of the convolution model. We point out that the off-shell properties of the bound nucleon structure function give rise to sizable nuclear effects.Comment: 29 pages (and 10 figures available as hard copies from Authors), REVTE

    Optimization of R(e+e-) and "Freezing" of the QCD Couplant at Low Energies

    Full text link
    The new result for the third-order QCD corrections to R_{e^+e^-}, unlike the old, incorrect result, is nicely compatible with the principle-of-minimal-sensitivity optimization method. Moreover, it leads to infrared fixed-point behaviour: the optimized couplant, alpha_s/pi, for R(e+e-) does not diverge at low energies, but "freezes" to a value 0.26 below about 300 MeV. This provides some direct theoretical evidence, purely from perturbation theory, for the "freezing" of the couplant -- an idea that has long been a popular and successful phenomenological hypothesis. We use the "smearing" method of Poggio, Quinn, and Weinberg to compare the resulting theoretical prediction for R(e+e-) with experimental data down to the lowest energies, and find excellent agreement.Comment: 27 pages, LaTeX, 8 uuencoded figures, DE-FG05-92ER40717-

    Measurement of ISR-FSR interference in the processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma

    Get PDF
    Charge asymmetry in processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma is measured using 232 fb-1 of data collected with the BABAR detector at center-of-mass energies near 10.58 GeV. An observable is introduced and shown to be very robust against detector asymmetries while keeping a large sensitivity to the physical charge asymmetry that results from the interference between initial and final state radiation. The asymmetry is determined as afunction of the invariant mass of the final-state tracks from production threshold to a few GeV/c2. It is compared to the expectation from QED for e+ e- --> mu+ mu- gamma and from theoretical models for e+ e- --> pi+ pi- gamma. A clear interference pattern is observed in e+ e- --> pi+ pi- gamma, particularly in the vicinity of the f_2(1270) resonance. The inferred rate of lowest order FSR production is consistent with the QED expectation for e+ e- --> mu+ mu- gamma, and is negligibly small for e+ e- --> pi+ pi- gamma.Comment: 32 pages,29 figures, to be submitted to Phys. Rev.

    Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |V_{ub}|

    Get PDF
    We report the results of a study of the exclusive charmless semileptonic decays, B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu, B^+ --> eta l^+ nu and B^+ --> eta^' l^+ nu, (l = e or mu) undertaken with approximately 462x10^6 B\bar{B} pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q^2, the square of the momentum transferred to the lepton-neutrino pair, for B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu and B^+ --> eta l^+ nu. From these distributions, we extract the form-factor shapes f_+(q^2) and the total branching fractions BF(B^0 --> pi^- l^+ nu) = (1.45 +/- 0.04_{stat} +/- 0.06_{syst})x10^-4 (combined pi^- and pi^0 decay channels assuming isospin symmetry), BF(B^+ --> omega l^+ nu) = (1.19 +/- 0.16_{stat} +/- 0.09_{syst})x10^-4 and BF(B^+ --> eta l^+ nu) = (0.38 +/- 0.05_{stat} +/- 0.05_{syst})x10^-4. We also measure BF(B^+ --> eta^' l^+ nu) = (0.24 +/- 0.08_{stat} +/- 0.03_{syst})x10^-4. We obtain values for the magnitude of the CKM matrix element V_{ub} by direct comparison with three different QCD calculations in restricted q^2 ranges of B --> pi l^+ nu decays. From a simultaneous fit to the experimental data over the full q^2 range and the FNAL/MILC lattice QCD predictions, we obtain |V_{ub}| = (3.25 +/- 0.31)x10^-3, where the error is the combined experimental and theoretical uncertainty.Comment: 35 pages, 14 figures, submitted to PR

    Observation of time-reversal violation in the B0 meson system

    Get PDF
    The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or BÂŻÂŻÂŻ0), and J/ψK0L or ccÂŻK0S final states (referred to as B+ or B−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, BÂŻÂŻÂŻ0→B− and B−→BÂŻÂŻÂŻ0, as a function of the time difference between the two B decays. Using 468×106 BBÂŻÂŻÂŻ pairs produced in ΄(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS+T=−1.37±0.14(stat)±0.06(syst) and ΔS−T=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel)
    • 

    corecore